
NASA-CR-197767

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-94-002

WVU-SRL-94-002

WVU-SCS-TR-94-11

CERC-TR.TM-94-007

• J

d" _

Risk Management through Independent Verification
and Validation

by John R. Callahan, Tong C. Zhou and Ralph Wood

......... ;2--.'_?' 71 .':....

• _ ,_, ._. __........... ,_l. ¸ , :_,,

i ,<

(NASA-CR-197767) SOFTWARE RISK

MANAGEMENT THROUGH INOEPENDENT

VERIFICATION AND VALIDATION

Virginia Univ.) 9 p

National Aeronautics and Space Administration

(West

G3/6I

N95-26_86

Unclas

00_8515

West Virginia University

/ ,

[

1

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

_'cdS- JohnXR. Callahan Date

lvianager, Soft are Engineering WVU Principal Investigator

i

Published in the Proceedings of the 4th International Conference on Software Quality,

American Society for Quality Control, Washington, D.C., October 3-5, 1994.

Software Risk Management through Independent Verification and
Validation

John R. Callahan 1

Tong C. Zhou

Ralph Wood
Department of Statistics & Computer Science

Concurrent Engineering Research Center

West Virginia University

Abstract

Software project managers need tools to estimate

and track project goals in a continuous fashion

before, during, and after development of a

system. In addition, they need an ability to

compare the current project status with past

project profiles to validate management

intuition, identify problems, and then direct

appropriate resources to the sources of problems.

This paper describes a measurement-based

approach to calculating the risk inherent in

meeting project goals that leverages past project

metrics and existing estimation and tracking
models. We introduce the IV&V

Goal/Questions/Metrics model, explain its use in

the software development life cycle, and

describe our attempts to validate the model

through the reverse engineering of existing

projects.

1 Introduction

project, risk can be reduced if errors and other

discrepancies are found as early as possible in

the software development life cycle. Many
studies have shown that undetected errors in a

project will increase the likelihood of failures in

later life cycle phases when the cost to fix them

increases by orders of magnitude.

IV&V efforts are highly effective in early life

cycle phases [1] if they can successfully predict

the likelihood of problems based on an analysis

of the current state of a project. It is difficult,

however, to make such predictions with

provable accuracy and show correlation between

development activities and problems that arise

in later life cycle phases. Formal software

development models can provide some insight

based on quantified analysis of past software

development efforts [2,3]. While such formal

models are imperfect guides to future efforts,

they are far more likely to predict problems than
informal methods.

Managers of large, complex software projects

often rely on independent contractors to verify

and validate (V&V) the computer software

produced by a separate development contractor.

An independent V&V (IV&V) contractor helps

identify, manage, and reduce the potential risk

of failures to meet intended requirements in a

software project at all phases of development.

While some level of risk will always remain in a

We have developed an approach called the

IV&V Goal/Question/Metric method (IGQM)

that allows IV&V managers to monitor the level

of risk in a software development project. Using

IGQM, managers can use past projects as

"yardsticks" against which to measure present

projects. They can also assess the potential

impact of their decisions about resource

allocations, schedules, costs, and tradeoffs

1This work is supported by DARPA Grant MDA 972-91-J-102 under the DARPA Initiative for

Concurrent Engineering (DICE) program, NASA Grant NAG 5-2129 and NASA Cooperative Agreement

NCCW-0040 under the NASA Independent Software Verification and Validation (IV&V) Facility,

Fairmont, WV.

_ i_ •

goal 1 • question 1

goal 2 _ question 2

goal 3 M_ question 3

metric 1

metric 2

metric 3

Figure 1: The Goal/Question/Metric (GQM) model

during execution of the development effort. The

IGQM method provides continuous reporting of

the status of a project in terms of what areas are

at risk of failure. The method represents a
formal interface between the IV&V contractor,

the software development contractor, and the

customer. It summarizes the analysis work

performed by the IV&V contractor in terms of

what project goals are at risk of failure and

allows managers to make informed decisions

about why problems are occurring.

This paper discusses the IGQM model and its

use in an automated support environment [4].

Unlike existing metric-based models, our

approach does not emphasize any specific set of

metrics or functions for assessing risk. The
model allows for use of other assessment

models. The IGQM model is used to collect and

summarize the metrics and relate them directly

to project goals. Although our approach to

IV&V relies on metrics from past projects as

baselines, the model can be "primed" with

informal estimates or external project databases.

Results from pilot projects are then used as

feedback to provide continuous improvement to

the model itself in order to improve our

predictive accuracy.

The IGQM model can incorporate several

existing software estimation and tracking
methods. These include the COCOMO method

[2] and Software Equation [3[for estimating
cost, size, and effort. We describe our attempts

to validate our approach by using these methods

to reverse engineering past projects to determine

if identifying risk sources early in the life cycle

could have helped prevent later problems.

The IGQM model is embedded in an automated

support environment for software IV&V [4] that

allows continuous analysis of a project's status.

IV&V is viewed as a complementary process to

the software development process [5] and it is

responsible for continuous assessment of the

development process. As a software

development process progresses, events are

triggered in the IV&V process. The IV&V team

must analyze changes in the development

process and publish its findings to the customer

in the form of an IV&V report. This report is

generated using the IGQM method by a tool that

is integrated into a CASE environment. The

reporting tool collects and summarizes analysis

results (i.e., metrics) from other IV&V CASE

tools in an incremental fashion. When a change

occurs in the development process, the project

measurements and risk are updated

incrementally like values and formulas in a

spreadsheet• The risk impact of each change is

assessed immediately relative to the project

goals. This paper does not discuss the details of

the automated support environment, but focuses

on the IGQM model around which the

environment is organized.

2 Approach

The IGQM approach to software IV&V focuses

on the quantification, identification,

management, and reduction of risk in software

development projects based on objective metrics

taken during the software development life

cycle. Metrics include process measures (i.e.,

whether or not a particular procedure been

performed at this phase) as well as artifact

measures (i.e., quantitative measurements of

documents, code, tests, and other products).

The IGQM tool formally defines the impact of
such measures on the failure or success in

meeting project goals.

Our approach is based on the Goal-Question-
Metric (GQM) model [6] augmented with risk

analysis [7]. The GQM model depicted in

Figure 1 allows managers to explicitly describe a

Project Confidences Certainty Uncertainty ImportanceRisk
Q1 Q2 Q3 Q4

G1 1.00 0.36 0.77 0.00 0.45 0.55 0.80 0.440
G2 1.00 0.36 0.77 0.00 0.78 0.22 0.30 0.066
G3 1.00 0.36 0.77 0.00 1.00 0.00 0.90 0.00
G4 1.00 0.36 0.77 0.00 0.04 0.96 0.10 0.096

Table 1: Computing goal risks based on question confidence probabilities

Questions M1 M2 M3 M4 confidences

Q1 34 11 88 99 1.00

Q2 34 11 88 99 0.36

Q3 34 11 88 99 0.77

Q4 34 11 88 99 0.00

Table 2: Computing question confidence probabilities based on project metrics

:!

project in terms of a set of goals so that the

development team has more precise knowledge

about the intent of the customer. A project must

completely satisfy a set of goals to be

implemented successfully. Goals include

requirements but are much broader and can

include ambiguous statements like "the system

must be highly reliable." Each goal is satisfied

by answering a set of related questions. The

questions define the features needed to satisfy a

particular goal. Questions are answered true or

false, but can be parameterized with limits, e.g.,

"does the system have a 10,000 hour mean time

between failures?" Each question is answered

based on a set of quantifiable project metrics. A
metric might be "lines of code" or "estimated

mean time between failures" or any other

discrete value. The GQM approach is used as a

dialogue between customers and development

organizations for agreeing on the details of a
project. In this fashion, it should be clear to the

developer exactly what is expected of the final

product and the criteria for its acceptance.

We have augmented the GQM model to

compute the risk of failure in a project to satisfy

the intended goals. The risk of failing to satisfy
the goal is defined as the uncertainty of reaching

that goal multiplied by the importance of that
goal. Table 1 shows a list of goals, their

importances, certainty, uncertainty, and risks for

an example project. The goals G1 G4 might
be

• Low cost
• Medium effort

• Use of prototyping

• High reliability

The questions related to each goal in the IGQM

model will determine exactly what is meant by

each goal. The risk values associated with each

goal should change during the software

development life cycle. If we keep track of the

risk at each step in the development process, we

can identify high-risk goals and ensure that the

overall risk is non-increasing over time, i.e.,

while risk may increase at any step, the overall

risk trend is decreasing.

2.1 Risk associated with each goal

To calculate the risk associated with each goal,

the importance of the goal is specified explicitly

by the manager, but its certainty is computed

from answers to related questions in the GQM

model. For each goal-questions group, we

employ a set of certainty functions G at each

step of the development life cycle defined as

gi. : Gi,t,(ax. ,r,. . .)

where gi, tp _[0...1] for the i th goal at the

process step tp and each ax, tn is the

probabilistic confidence answering question x

as true at process step tn. Thus, the certainty of

satisfying each goal changes at each step in the

software development process. The certainty

Estimatedprobabilityof not exceeding size

SLOC x IOO0

250

200

150

100

50

0

--Q1

--Q2

I

1 10 25 (-1 50 84 (+1 90 99

stddev) expval stddev)

Figure 2: Confidence functions for estimated SLOC in early life cycle phases

i" i

functions may be based on the baselines of past

projects or on the results of simulated models.
In either case, the results of certainty functions

are added to the baseline for use in future

projects.

2.2 Confidence in answers to questions

Here is where existing estimation and tracking
methods fit into the IGQM model. Each

question can be answered true with a

characteristic probability called its confidence.
A false answer has a confidence value of zero.

The confidence of answering a question is

determined by a unique function based on

collected project metrics. For each question-

metrics group, we employ a set of confidence

functions Q defined as

qx, tp = ax, tp(Ma, tq,s,,Mb.t,.sl,...)

where qx, tp _ [0... 1] for question x at the

process step tp where each Ma, t_,se is a metric

a at step tz provided by source Se. Table 2

shows a question and its related metrics from
which a confidence function is defined. All

metric values are the same relative to each

question, but the confidence functions are

defined uniquely for each question and process

step. Metrics that are unknown at process steps
can still be used because the lack of knowledge

contributes to the risk calculation. Unknown

measure decrease confidence in answering

questions and in turn decreases the certainty of

satisfying a goal.

Predictive Functions

The characteristic certainty and confidence

functions associated with goals and questions

can be based on many existing methods that

have evolved from experiences on large numbers

of actual projects. The IGQM model simply
tries to relate the calculation of risk to the

analysis these methods provide in order to help

identify areas of a project that need attention

and allow managers to trace problems to their

sources.

For example, several methods exist for

estimating the eventual number of source lines

of cede (SLOC) in a project [3]. Early estimates

of SLOC will be very inaccurate, but we can

assess the probability of the correctness of our

estimate. Consider the goal of "Small Program"

in which the related questions are:

1. Are there less than 100 requirements?

2. Are there less than 50 function points?

3. Are there less than 50 modules?

4. Are there less than 10,000 SLOC?

In this example, question 4 might given the

most weight in ultimately determining the

acceptance criteria. However, in the early stages

of a project, we can only answer question 1 with

a large degree of confidence, but the answer to

this question will not have a large impact of

increasing the certainty of meeting the goal

+:i

: >,'

according to our weighting. Figure 2 shows a

risk profile for the different questions at this

stage of development. The relatively higher

slopes of the other questions illustrates a greater

degree of uncertainty.

The weighting of each question confidence

measure in determining goal certainty will

change during the lifetime of the project, i.e.,

the slopes will decrease and different measures

will play larger roles. Eventually, confidence

functions may get better with more experience

and a broader database of actual projects. This

will also decrease the uncertainty.

Estimating functions are highly domain

dependent. This is why it is important for each

organization to institute measurement programs

to improve the effectiveness of their predictions.

The IGQM model can be primed with hand-

picked estimate or those from external projects,

but these initial estimates will be highly

inaccurate. Only with time can an organization

build confidence in their predictive models. Of

course, changes in personnel and the need to

tackle new projects can invalidate previous

experience, but

In the case of SLOC, we can determine the

probability of the eventual number of lines of

code exceeding our estimate. Likewise, many
methods exist for cost, size, error, and effort

estimation. Whereas many of these techniques

are only used early in a project to construct a

proposal or plan, our approach allows managers
to track actual measurements and compare them

with estimates. As a project evolves, a manager

can gain greater confidence in the estimates as

they change dynamically based on actual

performance.

4 Discussion

In Table 1, we can see that goal G1 is the only

goal with significant associated risk. If the

confidence and certainty functions are based on

methods that leverage past project data, the risk

associated with G1 at this process step might say

something like "44% of the projects at this step

with a similar goal-questions profile failed to

successfully satisfy this goal at time of delivery."
The interpretation is based on the characteristic

confidence and certainty functions related to

each goal and question respectively.

Creating the certainty and confidence functions

is not easy. They are based on profiles of past

projects, contain coefficients that are specific to
each environment or project, and must be

primed initially with estimates or data from

external projects. By mapping our approach to

current software development and V&V

practices, we "reverse" engineered these

estimates from informal measures on past

projects. Even though some information was

not available on these projects, they were

adequate enough to provide working estimates.

In one case we wanted to verify the intuition of

V&V personnel who noted problems with the

delivery schedule of project milestones. In their

expert opinion, the schedule was too short. Our

model, based on existing methods such as

COCOMO, confirmed that the intuition was
correct.

In the next sections, we show how traditional

V&V activities can be mapped to our model.

Specifically, we relate process management and

testing to see how they contribute to project

measurements and at what stages of the life

cycle. Based on this mapping, we can assess the
relative effectiveness of these traditional

approaches in controlling software projects.
Process management, for example, ensures that

the software development team follows all

process steps (e.g., DOD 2167A) and follows up
on all discrepancy reports and anomalies. It

monitors that the proper artifacts (i.e.,

documents and code) are produced on time and

in their proper order. Testing, on the other
hand, is usually associated with code level

validation of the end-product system in a

simulated environment. While it is widely

believed that both of these approaches help

reduce project risk, they have serious limitations

in many projects, especially in large, complex

systems with volatile requirements. It is

possible that expensive and catastrophic errors

may go undetected using traditional approaches.
We show that according to our reverse

engineered projects, late life cycle testing may
find some errors but it is often too late to fix

them. This fact shows up not as an increase in

risk towards the end of the project, but as an

inability of existing techniques to keep the risk

trend non-increasing and within nominal limits.

Processmanagementand testingaloneare
inadequatemeansto managerisk in large,
complexprojects.

4.1Process

First, an IV&V team can check to make sure the

software development process is followed at all

steps. The goal of this task is to reduce risk by

ensuring that a process is followed that increases

the probability of success. The reasoning behind

this task is informal: if a past task was

successful using a process then each step must

be repeated to guarantee success in other

projects.

We can cast current software development

practices into the IGQM risk model by asking

specific questions about process steps

accomplished. The metrics are Boolean values

that help answer questions at each step

regarding whether or not a procedure has been

performed. In this fashion, the IGQM approach
subsumes these current "checklist" methods and

provides a metrics-based environment for

formally validating whether or not generic

assumptions about process effectiveness are true.

Process tracking by the IV&V team is necessary
but insufficient to ensure risk reduction in the

development project.

4.2 Testing

Software testing has been a major focus of

IV&V efforts, but testing is expensive and has

severe limitations. Traditional testing cannot

find many problems or finds problems too late in

the software development life cycle where they

are too costly to fix. In the IGQM model, the

results of tests can be viewed as metrics (e.g.,

pass-fail). From this metrics-based perspective,

early analysis of requirements and design can
also be viewed as "tests" but the test results are

viewed with less confidence than concrete tests

at later stages of the development life cycle. In

addition, the tests can be directly associated with

requirements or project goals in the IGQM

model. In this case, the existence of a test is

important for tracability. We used this approach

to model traditional testing in the IGQM model

and showed that late testing reduces risk, but

that the risk trend is already too high at later

phases for testing to have any significant effect.

Traditional testing does not permit early

detection of problems and it is often impossible

to exercise a system with a battery of tests that

completely characterize the operational

environment. If major problems occur, it is

often too late and expensive to fix them. As a

result, the software might experience traumatic

failure, the project is scrapped, must be redone,
or the customer is left dissatisfied with a

partially functional system. If the customer had

access to effective, predictive estimate earlier in

the development process, expectations might be
more realistic and the intentions better defined

with the development team.

5 Implementation

We have implemented the IGQM model in a

tool for use by IV&V practitioners. The tool,

called ADMIT (A Distributed Metrics

Integration Tool), is implemented in Tk/Tcl

under the X Windows system and the UNIX

operating system. The tool primarily consists of

three list boxes of goals, questions, and metrics

and a multi-graph widget that shows the

cumulative risk for the project, per goal,

question confidences, and metric values.

Metrics come from many sources in the
distributed environment. Some come from

shared files and databases (e.g., the Network

File System (NFS), Oracle). When the files

change, the tool read the file, updates the
measure, and recalculates the associated

confidence and certainty functions. Metric may

also be source directly from CASE tools using

remote procedure call in which the ADMIT tool

acts as the server. We are continuing to evolve

our implementation as we integrate other
sources of metrics and techniques for collecting
them.

6 Summary

Our approach depends on an intense metrics
collection and archival capability to provide

high levels of confidence in IV&V predictions.

It also depends on the continuous evolution of

the predictive certainty and confidence

functions. While our approach does not
eliminate risk from a project, it does formalize

the risk identification, management, and

reduction. It makes risk management the

• i ¸

i

,/i I' •

explicit objective of the IV&V process in order
to deliver effective results to the customer.

Moreover, the confidence of predictions can be
increased as our baseline grows with each

project. For well-defined application domains,

we expect this approach will have most value

based on extrapolating experiences with the

IGQM model in practice.

While a statistical risk model of IV&V does not

guarantee success, it represents a significant

improvement over existing practices that deliver

dubious value to the IV&V customer and may

unknowingly harm software development efforts

with needless paperwork. During the course of

our research, we continue to investigate (1)

effective process models; (2) specific and useful

metrics and their correlation within the process;

and (3) continuous improvement of certainty
and confidence functions associated with the

process.

7 References

[1] The Cost-Effectiveness of Independent
Software Verification and Validation, NASA Jet

Propulsion Laboratory, 1985.

[2] Boehm, B., Software Engineering

Economics, Prentice-Hall, Inc., Englewood

Cliffs, NJ, 1981.

[3] Putnam, L. and W. Myers, Measures

for Excellence: Reliable Software on Time,

within Budget, Prentice Hall, Inc., Englewood

Cliffs, NJ, 1992.

[4] Karinthi, R., S. Kankanahalli, S.

Reddy, C. Cascaval, W. Jackson, S.

Venkatraman, H. Zheng, Collaborative

Environment for Independent Verification and

Validation of Software, In Proceedings of the

Third 1EEE Workshop on Enabling

Technologies: Infrastructure for Collaborative

Enterprises, April 17-19, 1994, Morgantown,
WV.

[5] Lewis, R., Independent Verification

and Validation: A Life Cycle Engineering

Process for Quality Software, John Wiley &
Sons, New York, 1992.

[6] Basili, V., Applying the

Goal/Question/Metric Paradigm in the

Experience Factory, in Software Quality

Assurance: A Worldwide Perspective, Chapman

& Hall Publishers, 1994.

[7] Cardenas-Garcia, S. and M. Zelkowitz,

A Management Tool for Evaluation of Software

Designs, 1EEE Transactions on

Software Engineering, Volume 17, Number 9,

September 1991.

8 Biographies

John R. Callahan is an assistant professor of

computer science in the Department of Statistics

and Computer Science at West Virginia

University and a research faculty member at the

Concurrent Engineering Research Center

(CERC) in Morgantown, West Virginia. He
received his Ph.D. from the University of

Maryland College Park in 1993 in software

engineering and is currently working on
research in independent verification and

validation of computer software. He has worked

for Xerox Corporation of Tyson's Comer,

Virginia and Palo Alto, California as well as

NASA Goddard Space Flight Center and the

Department of Defense. Dr. Callahan serves as
the NASA Research Associate at the NASA

IV&V Facility in Fairmont, West Virginia. The

Fairmont facility houses IV&V contract work

for the Mission To Planet Earth and Space

Station projects.

Tong C. Zhou is a graduate student in the

Department of Statistics and Computer Science

at West Virginia University and a researcher at

the Concurrent Engineering Research Center

(CERC) in Morgantown, West Virginia. Her
interests include formal methods, risk analysis,

and automated test generation.

Ralph Wood is a visiting scientist at the
Concurrent Engineering Research Center

(CERC) in Morgantown, West Virginia. Dr.
Wood is a former senior engineering scientist

for General Electric Research and Development.

His interests include risk management and
cost/schedule estimation.

